Electroencephalographic neurofeedback: Level of evidence in mental and brain disorders and suggestions for good clinical practice
Electroencephalographic neurofeedback: Level of evidence in mental and brain disorders and suggestions for good clinical practice

Neurofeedback électroencéphalographique : niveaux de preuve clinique pour les troubles mentaux et du cerveau et propositions de bonnes pratiques cliniques

J.-A. Micoulaud-Franchi a,b, A. McGonigal c,d, R. Lopez e, C. Daudet f,g, I. Kotwas h, F. Bartolomei c,d,i

a Service d’explorations fonctionnelles du système nerveux, clinique du sommeil, CHU de Bordeaux, place Amélie-Raba-Léon, 33076 Bordeaux, France
b USR CNRS 3413 SANPSY, CHU Pellegrin, université de Bordeaux, 33076 Bordeaux, France
c Service de neurophysiologie clinique, centre hospitalo universitaire de la Timone, 264, rue Saint-Pierre, 13005 Marseille, France
d Unité mixte Inserm épilepsie et cognition UMR 751, 27, boulevard Jean-Moulin, 13385 Marseille cedex 05, France
e Unité des troubles du sommeil, consultation TDA/H adulte, hôpital Gui-de-Chauliac, Montpellier, France
f Cabinet Saint-Augustin, psychiatrie, psychothérapie, Neurofeedback, 63, rue Pelouse-de-Douet, 33000 Bordeaux, France
g Université de Bordeaux, 33000 Bordeaux, France
h Laboratoire parole et langage, UMR 7309, Aix-Marseille université, Marseille, France
i Hôpital Henri-Gastaut, établissement hospitalier spécialisé dans le traitement des épilepsies, 300, boulevard de Sainte-Marguerite, 13009 Marseille, France

Received 17 May 2015; accepted 6 October 2015

KEYWORDS
Neurofeedback; Evidence-based medicine;

Summary The technique of electroencephalographic neurofeedback (EEG NF) emerged in the 1970s and is a technique that measures a subject’s EEG signal, processes it in real time, extracts a parameter of interest and presents this information in visual or auditory form. The goal is to effectuate a behavioural modification by modulating brain activity. The EEG NF opens new
Introduction

It has long been recognised that brain activity may be modulated by conditioning responses. This was first demonstrated in electroencephalographic (EEG) studies from the 1930s and 1940s with regards to the alpha-blocking response [32,45,60], for example by associating an auditory stimulus with a light stimulus, and progressively ''training'' alpha rhythms to eventually attenuate to the auditory stimulation alone (see [7,6,86] for review). Subsequent studies in the 1960s confirmed that alpha-blocking could indeed be conditioned [47,68] and that it was also possible to modulate both EEG synchronization and behavior using operant conditioning; that is, increasing preferred effects and reducing therapeutic possibilities in the fields of psychiatry and neurology. However, the development of EEG NF in clinical practice requires (i) a good level of evidence of therapeutic efficacy of this technique, (ii) a good practice guide for this technique. Firstly, this article investigates selected trials with the following criteria: study design with controlled, randomized, and open or blind protocol, primary endpoint related to the mental and brain disorders treated and assessed with standardized measurement tools, identifiable EEG neurophysiological targets, underpinned by pathophysiological relevance. Trials were found for: epilepsies, migraine, stroke, chronic insomnia, attentional-deficit/hyperactivity disorder (ADHD), autism spectrum disorder, major depressive disorder, anxiety disorders, addictive disorders, psychotic disorders. Secondly, this article investigates the principles of neurofeedback therapy in line with learning theory. Different underlying therapeutic models are presented didactically between two continua: a continuum between implicit and explicit learning and a continuum between the biomedical model (centred on ''the disease'' and integrative biopsychosocial model of health (centred on ''the illness''). The main relevant learning model is to link neurofeedback therapy with the field of cognitive remediation techniques. The methodological specificity of neurofeedback is to be guided by biologically relevant neurophysiological parameters. Guidelines for good clinical practice of EEG NF concerning technical issues of electrophysiology and of learning are suggested. These require validation by institutional structures for the clinical practice of EEG NF.

© 2015 Elsevier Masson SAS. All rights reserved.
unwanted effects by using a system of reward and punishment [22].

While some inconsistencies exist across studies, it is nevertheless recognized that brain activity as measured by EEG may thus be modified according to specific principles of learning theory [91]. Utilising this concept of “voluntary control” of the EEG through learning, the technique of electroencephalographic neurofeedback (EEG NF) emerged in the 1970s. EEG NF is a technique that measures a subject’s EEG signal, processes it in real time, extracts a parameter of interest and presents this information in visual or auditory form [23]. The goal is to effectuate a behavioural modification by modulating brain activity [23].

The likely mechanism of this has been considered operant learning; that is, through conditioning, the subject becomes able to increase a preferred state or behavior and decrease undesired ones [86]. However, another viewpoint is that the therapeutic effect of EEG NF occurs through cognitive remediation techniques, guided by specific and biologically relevant neurophysiological parameters [86]. As such, it can be considered within the larger spectrum of new generation neurobehavioral therapies that have been developed according to principles of cognitive science, and that are increasingly employed across a range of neurological, psychiatric and psychological conditions [87].

Following the digitization of EEG in the 1990s, there was renewed interest in EEG NF in the context of easier access to electrophysiological techniques and the possibility of more precise electrophysiological information. Increasing use of clinical EEG NF in psychiatry and neurology since the 2000s [11] has coincided with the development of NF using functional magnetic resonance imaging in real time (fMRI NF), which is currently used only in research, but which offers innovative therapeutic perspectives [48, 66, 98, 103]. Another pertinent technical advance concomitant with the resurgence of EEG NF is the development of the brain-computer interface (BCI), which offers original rehabilitation and therapeutic solutions [27, 111]. Despite great interest in fMRI NF and the BCI field of research, significant controversy exists concerning the development of EEG NF in the fields of psychiatry and neurology. With regards to the efficacy of neurofeedback in mental and brain disorders, opinion within the scientific community appears to be rather sharply divided: one school of thought is positive and considers neurofeedback to be effective, whereas the other is very sceptical and does not consider neurofeedback training to have any value, even as an adjunctive treatment. Thus, this article aims to review the evidence for (i) therapeutic efficacy of this technique according to the principle of evidence-based medicine; (ii) good clinical practice for this technique in line with a defined underlying therapeutic model and an institutional structure for regulated practice.

Level of evidence of therapeutic efficacy

There are many trials of efficacy of EEG NF in mental and brain disorders, but most have significant methodological weaknesses [83], which could explain the scepticism of many researchers and clinicians concerning the effectiveness of NF to treat mental and brain disorders. In order to rigorously evaluate the efficacy of EEG NF, in the present article only trials with the following criteria will be presented:

- a study design with controlled, randomized, and open or blind protocol;
- a primary endpoint related to the disorder treated and assessed with standardized measurement tools;
- an identifiable EEG neurophysiological target, underpinned by pathophysiological relevance (Table 1).

EEG NF neurophysiological targets can be classified into three categories according to three general neurophysiological mechanisms:

- arousal [41];
- emotional valence [28];
- sleep.

From a simplified point of view, arousal level can be related to the EEG power in certain spectral bands [41, 75]. An increase in central frontal beta band (13–30 Hz) can be related to an increase in arousal [39] and an increase in central frontal theta (4–8 Hz) band is related to a decrease in arousal with subjective sleepiness [102]. Moreover, an increase in occipital alpha (8–12 Hz) can be related to a relaxed state [73].

Emotional valence has been related to EEG power asymmetry in frontal lobes [28]. Despite some inconsistencies in the literature, an increase in alpha power in the left compared to the right frontal cortex has been related to susceptibility toward negative emotions [97].

Sleep stages 2 and 3 (non-REM) are characterized by the presence of sleep spindles. In animal models, it has been found that an increase of sensory motor rhythm (SMR) (Rolandi’s mu) can be related to an increase of spindles and to increased sleep quality [96].

Arousal is a relevant potential EEG NF target for various clinical conditions including attention-deficit/hyperactivity disorder (ADHD), epilepsy, anxiety disorder and addiction. Indeed, ADHD symptoms can be related to a decrease in arousal [10, 41]. Epilepsy can be worsened by sleep deprivation and it has already been shown that some patients with epilepsy can control their seizures by enhancing their arousal level [69]. On the other hand, anxiety disorder is related to an increase of arousal [2]. Emotional valence targets are relevant for major depressive disorder, which is characterized by emotional negative bias [29]. The SMR target may be relevant for paretic after stroke, as it was found that SMR is related to motor imagery [72] and that motor imagery could have a positive effect on stroke rehabilitation [13]. Sleep targets are relevant for insomnia that is linked to poor sleep quality [81]. (For summary see Table 1.) Thus, the particular clinical context can be used to determine the neurophysiological target selected for use with EEG NF.

Epilepsies

The neurological disease that has benefited from the most study with EEG NF is pharmacoresistant epilepsy in adults [95, 105]. Two meta-analyses reinforced the therapeutic effectiveness of EEG NF in pharmacoresistant epilepsy.
Table 1 EEG NF main protocols, EEG targets and supposed psychophysiological effects.

<table>
<thead>
<tr>
<th>Disorder</th>
<th>Neurophysiological targeta</th>
<th>EEG target</th>
<th>Aims of EEG NF training</th>
<th>Psychophysiological effect of the training</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADHD and epilepsyc</td>
<td>Decrease of the level of reticulothalamo cortical activation (hypoarousal)b</td>
<td>α on left frontal cortex β on left frontal cortex</td>
<td>β on right frontal cortex α on right frontal cortex β on right frontal cortex</td>
<td>Increase of arousal and of attentional resource</td>
</tr>
<tr>
<td>MDD</td>
<td>Dysregulation of the balance between positive and negative emotional valence (negative bias)</td>
<td>α in right frontal cortex</td>
<td>α in right frontal cortex</td>
<td>Inversion of the balance between positive and negative emotional valence</td>
</tr>
<tr>
<td>GADd</td>
<td>Cortical hyperarousal and neurovegetative hyper reactivity</td>
<td>β in Rolandic mu (or Sensory Motor Rhythm)</td>
<td>β in Rolandic mu</td>
<td>Relaxation by decrease of cortical hyperarousal Reduction of sleep latency and increase of sleep spindle</td>
</tr>
<tr>
<td>Insomnia</td>
<td>Decrease of sleep spindle</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ADHD: attentional-deficit/hyperactivity disorder [65]; MDD: major depressive disorder [21]; GAD: generalized anxiety disorder [79,1]; β: EEG spectral power in beta band > 14 Hz (associated with cortical arousal); α: EEG spectral power in theta band 3.5–7 Hz (associated with sleepiness); α: EEG spectral power in alpha band 8–13 Hz (associated with cortical hypometabolism).

a The identified pathophysiological target cannot be present in some patients. Its absence would be a poor prognostic factor for the EEG NF protocol.

b In ADHD and epilepsy, additional protocols were validated on slow cortical potentials (slow cortical potential, [PCS]) and would focus instead on fronto-striatal networks and regulation of neuronal excitability [100]. Such a protocol was also used in migraine [90].

c The protocol used in OCD is mostly related to an EEG spectral power reduction protocol in the theta band [31].

d The protocol used in addictions is close to that used in GAD but is called ’deep relaxation protocol’ because it involves increasing the spectral power in the theta rather than the alpha band but [77,84].

Migraine

Treatment of migraine using biofeedback has been studied in a single randomized open label study in 10 children (versus 10 children on a waiting list) and was in favour of a reduction in number of days with migraine per month in the group treated with EEG NF [90]. Several other studies have been conducted, and although in favour of efficacy, EEG NF does not have satisfactory methodological criteria [63,99]. The efficacy of EEG NF has yet to be confirmed, especially in adults. However, it should be noted that: (i) biofeedback on peripheral parameters (skin temperature, skin conductance, electromyography) presents a high level of evidence to support its use in migraine [71,88], especially confirmed in a meta-analysis [70]; and (ii) that neurofeedback by hemoencephalography (measuring changes in blood transience that reflect oxygenation and local blood flow) represents an interesting avenue for the treatment of migraines [20].

Stroke

The use of EEG in patients with stroke was initially in rehabilitation in the field of EEG BCI. The aim was to teach the patient to generate SMR modulation in order to control an external mechanical orthosis [3]. Recently, it was proposed that SMR modulation could also be used through EEG NF for re-education in order to improve motor function recovery after stroke [78]. One randomized blinded trial with 10 patients per group was conducted. Three intervention groups were performed: occupational therapy (OT) alone; OT with EEG NF; and OT with electromyographic (EMG)
biofeedback. EEG NF and EMG biofeedback showed similar motor function recovery; further studies with EEG NF are needed. It should be noted that the fields of EEG BCI and EEG NF in the context of stroke patients are closely related because of the possible recovery effect of EEG BCI through a neuroplasticity mechanism [31].

Chronic insomnia

Chronic insomnia was studied with two randomized blinded trials with respectively 16 and 12 patients treated with EEG NF (versus 11 and 12 subjects treated with ”placebo neurofeedback”). These studies were in favour of superior efficacy for EEG NF [42,81]. The effect of EEG NF on sleep could also improve memory function [81].

Attention-deficit/hyperactivity disorder

Attention-deficit/hyperactivity disorder (ADHD) in children is the psychiatric disorder for which EEG NF has received the most attention from society [11] and from research groups [11,35]. For example, EEG NF in ADHD received a grade 1 (“best support”) rating from the American Academy of Pediatrics in 2013.

Three meta-analyses studies reinforced the therapeutic usefulness of EEG NF in ADHD [9,65,92]. The first meta-analysis of Arn et al. (2009) found an effect size (ES) that was more significant for the inattention dimension than for the hyperactivity dimension of ADHD [9]. However, this meta-analysis is now slightly outdated and included some studies with poor methodological quality. The second meta-analysis of Sonuga-Barke et al. (2013) found an ES significantly higher than in the control group in randomized and open trials, but this effect remained non-significant in randomized and blinded trials [92]. The third meta-analysis of Micoulaud-Franchi et al. (2014) found an ES that was significantly higher than in the control group in randomized and blinded trials for the inattention dimension of ADHD [65]. In these two last meta-analyses, teacher assessment was chosen if the control group performed a cognitive remediation [34,94,104], and assessment by parents and teachers was chosen if the control group performed a placebo NF protocol [12,54]. It should be noted that efficacy with regards to the inattention dimension was proportional to the number of neurofeedback sessions [9] and seemed to be maintained over time [57].

Despite these meta-analyses, the effectiveness of EEG NF in ADHD remain debated [8,19,26,93,107,108]. In particular, the meta-analysis of Micoulaud-Franchi et al. (2014) did not include the Arnold et al. study (2013) [4] and the studies that compare EEG NF to medication [16,15,74]. These choices warrant some explanations. The study by Arnold et al. used a well-controlled, randomized and blinded protocol [4]. However, the EEG NF protocol was not based on basic learning theory (in particular by the type of reinforcement) used in standard EEG NF protocols [86] and the EEG recording was carried out using an unconventional set-up with electrodes placed on the forehead, a region known to be problematic for recording because of muscle artefacts. The Arnold et al. study thus highlights the need for good clinical practice recommendations for EEG NF, in line with neurophysiological good practice for EEG recording [30] and learning theory [86,109]. The reason for excluding studies comparing EEG NF to medication is because the medication comparison group is not the most appropriate comparison method to EEG NF. Indeed, semi-active control (such as cognitive remediation techniques) and sham-NF groups to compare the EEG NF intervention are more appropriate to control for the non-specific effects of EEG NF [11]. However, comparison with medication found that EEG NF was not as effective as medication in improving clinical symptoms [16,74] or cognitive function [15], but could be more effective on academic performance in the longer term [64].

Autism spectrum disorder

Autism spectrum disorder (ASD) in children is the second condition to have benefited from a relatively large number of efficacy studies with EEG NF [43]. However, it should be noted that, rather than demonstrating specific effectiveness on the signs of ASD, EEG NF may rather be effective on the comorbid ADHD that is present in approximately 40–50% of subjects with ASD [43].

Major depressive disorder

Major depressive disorder (MDD) was studied using a single randomized and open trial in 12 subjects treated with EEG NF (versus 11 subjects treated with ”placebo psychotherapy”). This study was in favour of a superior efficacy of EEG NF [21]. A recent pilot study in 9 subjects reported results for a specific neurophysiological effect of this therapy [76]. The effectiveness of EEG NF has yet to be confirmed in MDD. It should be noted that fMRI NF could offer innovative therapeutic perspectives in the field of mood disorders [59].

Anxiety disorders

Within anxiety disorders, generalized anxiety disorder (GAD) benefited from two randomized and open trials with respectively nine [79] and fifteen [1] subjects in comparison to relaxation techniques with electromyographic (EMG) biofeedback in equal size groups. Obsessive-compulsive disorder (OCD) benefited from a randomized and blinded trial in 10 subjects (versus 10 subjects performing a biofeedback ”placebo”) [51]. All of these studies showed results in favour of a superior efficacy of EEG NF. However, this efficacy should be compared to the well-established benefits of cognitive behavioral therapy (CBT). It should be noted that the relaxation sought by EEG NF protocols used in the GAD studies is probably different from the relaxation obtained by other techniques. EEG NF could thus be proposed as an alternative therapy for subjects who fail to achieve relaxation with other methods [85] and further research is needed to investigate the neuroplasticity effect of EEG NF in anxiety disorder, in particular in post-traumatic stress disorder (PTSD) [49].
Addictive disorders

The first randomized and open study with EEG NF was performed on 15 subjects (versus 14 subjects receiving treatment as usual). All subjects were veterans of the Vietnam War, with a diagnosis of PTSD and addictive disorder. The study found a superior efficacy of EEG NF on maintaining abstinence from alcohol [77]. This effect was confirmed in a separate randomized and open trial in 61 subjects (versus 60 subjects undergoing occupational support). Subjects in this second study did not suffer from PTSD but from various addictions (alcohol, heroin, cocaine, methamphetamine) [84]. It should be noted, as for the ASD, that the effect of EEG NF in addictive disorders might be non-specific, through an effect on anxiety disorder or ADHD comorbidities.

Psychotic disorders

Psychotic disorders have not so far benefited from randomized controlled trials of EEG NF. Interestingly, it was found that patients with schizophrenia were capable of learning self-control of EEG despite their cognitive and motivational deficits [37]. An uncontrolled clinical case study suggested efficacy of personalized EEG NF on psychotic symptoms [104], and the potential therapeutic avenues for EEG NF in schizophrenia seem to be more specifically the treatment of hallucinations using EEG or fMRI NF [62].

Good clinical practice

Any treatment must account for its model according to scientific criteria of evidence and relevance and build the best practice guide for the therapeutic technique and the institutional support to structure it [40]. This is particularly important for EEG NF. Indeed, not only the methodological quality of the trials is discussed in recent studies on evidence of EEG NF efficacy, but also the quality of the conduct of the EEG NF sessions themselves within the “active” group [8,112].

Therapeutic model

The practice of EEG NF can be examined in the light of two therapeutic models that can be described didactically, in terms of a spectrum between two paradigmatic poles [36,101].

The first continuum is between implicit and explicit learning. Implicit learning (or “automatic” learning) refers to the strict operation of the applying conditioning paradigm that was the foundation of the first neurofeedback protocols. Following this therapeutic approach, EEG NF sessions would target the brain in order to automatically correct certain neurophysiological abnormalities. Such an approach shares a therapeutic model close to the effect of electrical brain stimulation [89].

Explicit (or “voluntary control”) learning refers to cognitive remediation techniques and the development of new skills in the subject suffering from a mental and brain disorders [87]. Following this therapeutic approach, EEG NF sessions would aim to teach the subject by successive “trial and error”, then to repeat and reinforce new psychophysiological or neurocognitive skills (e.g. attentional and arousal, emotional regulation, or relaxation skills). The subject would require a certain awareness of the skills being learned and would then have to try to transfer these new skills into everyday life. In this model, the role of the therapist is essential to explain the technique, enhance learning, maintain motivation during the sessions and allow tracking of the performance in a given session and in successive sessions [112]. Compared to CBT techniques or other forms of cognitive remediation [87], the originality of EEG NF is not in prescribing specific cognitive tasks but in allowing the subject to find his or her own cognitive task associated with positive reinforcement and thus to maximize the effect on the neurophysiological characteristics targeted by the neurofeedback protocol [86]. This model, which defined neurofeedback as a neurophysiological remediation, implies specific training of the practitioner, who must continually ask the question: “is the patient learning something?” [38,112].

The second continuum is between the biomedical model (centred on “the disease”) and integrative biopsychosocial model of health (centred on “the illness”). The biomedical model focuses on the brain and postulates a linear causality between a pathophysiological abnormality seen as a trait and a mental and brain disorder. This approach would be to “correct” these abnormalities in order to achieve a therapeutic effect [36]. In this approach, a way to improve EEG NF protocols would be to target “personalized” EEG abnormalities in a given subject, previously measured by quantitative EEG [46,106], perhaps even topographically identified by EEG source modelling [14,25]. Despite its theoretical appeal, this type of EEG NF protocol remains to be validated. Moreover, the quantitative EEG technique, which involves comparing the EEG data of a subject to a normative EEG basis (including Z-score), raises questions about the relevance of EEG trait markers in mental and brain disorders [5,24], as well as questions about technical limitations [18,44,46,106].

Integrative biopsychosocial models of health focus on the patient and suggest links between pathophysiological abnormalities seen as a neurocognitive state and psychosocial dimensions. Firstly, this model posits that: (i) the abnormal neurocognitive state can be compensated by cognitive flexibility in order to “compensate” cognitive impairment by “reinforcing” other skills [36] and (ii) the flexibility can be enhanced by neurofeedback in order to balance between neuronal synchronization and desynchronization, respectively required for integration/disintegration of neuronal assemblies during flexible cognition [80]. Secondly, this integrative model posits that this neurocognitive flexibility and the reinforcing of new skills would be facilitated by the inclusion of psychosocial variables such as “focus of control” or “self-efficacy” [35,86,110]. The modulating effect of these psychosocial variables on learning performance during EEG NF sessions [110], as well as on the therapeutic efficacy of the treatment, remains to be studied [35].

Currently, there are important discussions on the choice of therapeutic models for defining the best practice of EEG NF. The quality of EEG NF practice does not fit into the extremes of the spectrum. Early explicit learning (with effort) can become implicit (“automatic”) thereafter
Table 2: Signal processing software control parameters required for recording EEG in the context of EEG NF. This suggests minimal specifications that should be available when choosing neurofeedback software.

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Definitions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Filters</td>
<td>Decomposition of the EEG signal by Fourier analysis (or other) for measuring the amplitude of the EEG spectral power in a selected frequency band.</td>
</tr>
<tr>
<td>Epoch</td>
<td>EEG epoch time in which the spectral analysis will be applied.</td>
</tr>
<tr>
<td>Sliding averaging</td>
<td>Length of sliding averaging for rendering smoother amplitude fluctuations of EEG spectral powers.</td>
</tr>
<tr>
<td>Feedback</td>
<td>Feedback on the targeted EEG activity (often continuous) and positive reinforcement (depending on the threshold and holding time). Perceptual characteristics for neurophysiological target (visual or auditory continuous or punctual, score or level, etc.).</td>
</tr>
<tr>
<td>Threshold</td>
<td>Amplitude of the EEG spectral power above (or below) which positive reinforcement can be made.</td>
</tr>
<tr>
<td>Occupation time</td>
<td>Time after which the amplitude value above (or below) the threshold will lead to positive reinforcement.</td>
</tr>
<tr>
<td>Inhibition</td>
<td>Inhibition of positive reinforcement in case of change of the amplitude of the power spectral EEG related to a biological or technical artifact, not related to a neurocognitive activity of the subject.</td>
</tr>
<tr>
<td>Annotation</td>
<td>Annotation system for a EEG-neurofeedback session.</td>
</tr>
<tr>
<td>Duration and sequence of a session</td>
<td>Succession of training periods and rest periods and determination of their durations and numbers.</td>
</tr>
<tr>
<td>Session report</td>
<td>Evaluation of the training parameter during the session (reflection of the performance).</td>
</tr>
<tr>
<td>Storage</td>
<td>Neurofeedback sessions with the EEG signal.</td>
</tr>
<tr>
<td>End of treatment report</td>
<td>Evaluation of the learning curve during the sessions (evolution of the training parameter). (Note: the format of the stored files determines their exportability).</td>
</tr>
<tr>
<td>Clinical data management</td>
<td>Clinical data management system coupled with neurofeedback sessions.</td>
</tr>
</tbody>
</table>

[36,53,101] and an approach targeting a specific quantitative EEG brain abnormality can complete an approach taking into account the self-efficacy of the subject. A degree of lively scientific debate provoked by different therapeutic models of EEG NF is in any case necessary for conscientious and ethical research, and practice of this therapeutic approach [36,86,101].

Practice guideline

The rules of good practice guidelines of EEG NF concern:

- technical issues of electrophysiology [30];
- technical issues of learning [86].

These aspects are rarely discussed in the EEG NF efficacy trials and there is no current consensus [11,38,61,112]. They will be essential to consider in order to gradually improve the practice of EEG NF in neurology and psychiatry [40]. The number of sessions of neurofeedback is usually 20–30 sessions, one to three times per week, but the ideal number and the optimum spacing have not yet been defined [101]. From the electrophysiological point of view, the practice of neurofeedback requires high quality recording of EEG signal [30]. The practitioner must:

- be familiar with the recording equipment and the entire acquisition chain (amplifier, filters, high pass and low pass digital analogue converter);
- correctly set up the recording environment, especially concerning placement of EEG electrodes, to obtain correct impedances, and EEG montages to obtain valid deviation;
- be able to read and continuously monitor the EEG to identify artifacts and adjust the set-up of the material.

As part of the explicit model of learning, the practice of EEG NF requires the measurement of a parameter derived from the EEG and its representation through understandable information for the subject, in order to promote the development of new neurocognitive skills transferable to everyday life. Each software package marketed for the practice of EEG NF has different advantages and disadvantages regarding the handling of the control parameters. The therapist needs to manipulate these parameters to enhance learning and motivation of the subject during the sessions (Table 2).

Good knowledge of electrophysiological and learning techniques will be particularly useful with regards to four key elements of neurofeedback sessions:

- information: this is necessary before (explanation), during (motivation) and after (explanation) each session in order
for the subject to understand the principle of electrophysiological measurement and to adhere to the therapeutic model involved in the course. However, it seems advisable to minimize the information about the type of neurocognitive strategies prior to a session [50,101];

- the choice of threshold: this is an essential step. Adjusting a threshold (and a given occupation time) determines the number of positive reinforcements required to strengthen the subject in a type of neurocognitive strategy. The threshold may be set automatically or manually. The manual threshold seems to lead to better learning [86,101] but, unlike the automatic threshold, requires performing a baseline measurement before each session;

- the type of positive reinforcement: this can be visual or auditory, proportioned (graduated) or binary (present or absent), immediate or delayed, simple or complex, frequent or rare. Visual feedback, which is proportionate, immediate and simple, seems to allow better learning [101]. The number of reinforcements must be sufficient to maintain the motivation of the subject but not so great that they alter learning [101,38]. Note that positive reinforcement embedded in an entertaining interface (such as video games) may increase the motivation of the subject but impair learning [35,86];

- skill transfer sessions in daily life: these allow the generalization of learned skills [11,35,61]. They may be more effective when neurofeedback sessions are conducted with reference cues to the context of generalization: for example neurofeedback sessions for ADHD in an environment reminiscent of a classroom (now possible with portable neurofeedback equipment) [101]; future developments might even combine neurofeedback in virtual environments [17].

Institutional structure

The place of EEG NF within the current therapeutic approach remains uncertain for the moment. EEG NF does not properly belong to any single discipline. Neurofeedback is indeed at the interface between several domains: biomedical engineering, neurophysiology and psychophysiology, learning science, cognitive behavioral therapy, cognitive remediation and health psychology.

EEG NF in neurology and psychiatry is certainly not a therapeutic measure to consider as sole treatment in subjects presenting a mental and brain disorder. This is a complementary non-pharmacological therapy that could be used in conjunction with other treatment modalities. The institutional structure of EEG NF would enable:

- promotion of the development of research protocols [36,101,109], which would strengthen the level of therapeutic evidence of EEG NF; improve understanding of neurobiological mechanisms of learning and efficacy of EEG NF; and identify variables (neurophysiological, cognitive, affective and psychosocial) that modulate learning and the efficacy of EEG NF;

- quality control of the clinical practice of EEG NF [40]. This last point requires appropriate training of therapists using EEG NF. The Biofeedback Certification International Alliance (BCIA) model is an example that would allow controlled and rigorous development of this therapeutic technique [40].

Conclusion

In the fields of neurology and psychiatry, the therapeutic role of EEG NF currently remains controversial. Further studies are needed to confirm the effectiveness of EEG NF to treat mental and brain disorders. However, promising results have so far been found for therapeutic efficacy in children with ADHD and in patients with pharmacoresistant epilepsy. In parallel to the need for controlled, randomized, blinded studies, recommendations for good practice of this technique and its institutional structure remain to be established, as has been done for example for external brain stimulation [56].

Despite various obstacles to the implementation of EEG NF in clinical practice, the questions raised by this therapy seem to go beyond the strict field of neurofeedback and beyond the controversy between positive and sceptical opinions on the efficacy of EEG NF. Indeed, reflections on neurofeedback are paradigmatic of current thinking in the neurophysiological therapeutic field as applied to psychiatry and neurology. Use of electrophysiological and neuroimaging methods are changing approaches to performing CBT, cognitive remediation [58,82], external brain stimulation treatments [89] and pharmacotherapy [33]. These techniques deal with psychophysiological interactions between the subject and new therapeutic neurophysiological tools available to psychiatrist and neurologist; and raise important questions about how best to evaluate their efficacy, their best practice rules and their place within medical institutions, which merit further exploration. Despite its current controversy, EEG NF appears thus to be an experimental field that is emblematic of the ongoing evolution of neurophysiology in the therapeutic field of neurology and psychiatry.

Disclosure of interest

The authors declare that they have no competing interest.

References

Electroencephalographic neurofeedback

